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Abstract. The physicochemical events that underlie biological
processes are inevitably either/or events. Either a growth factor
molecule binds to a cell, or it doesn’t. Either a site on a cyclin
molecule is phosphorylated, or it isn’t. Either a regulatory
molecule binds to a DNA sequence, or it doesn’t. These
molecular eitherfor events lead to cellular either/or events. Either
a cell divides, or it doesn’t. Either a cell dies, or it doesn’t. Either
a cell turns on a particular gene, or it doesn't. Either a tumor cell
stays where it is, or it forms a distant metastasis. By considering
biolggical processes as the macroscopic aggregate results of these
many individual microscopic eitherfor events, we can gain
considerable insight into both normal and cancerous growth. In
fact, as will be outlined here, such discrete modeling may allow
us to see how the normal cellular populations of the body can
grow to predictable sizes, at predictable times, and to predictable
shapes. Such modeling can also allow us to gain insight into how
normal cellular populations may become cancerous cellular
populations. Indeed, such an approach allows us do a
sufficiently good job of imitating the growth and spread of
tumors as to be able to make estimates the most effective ways to
both detect and treat cancer.

INTRODUCTION

The discrete nature of atoms and molecules gives all
chemical change a random quality

The potential for randomness in cellular behavior is latent in
the simple but fundamental fact that all matter is made of
discrete entities: electrons, atoms, molecules. There may be 0,
1, 3, or a trillion molecules of insulin bound to a cell, but
never 1.7 molecules. Consider a chemical reaction between a
single molecule of insulin and six insulin receptor molecules;

Correspondence to: James Michaelson;
E-mail: michaelj@helix.mgh.harvard.edu

Key Words: Cancerous growth, carcinogenesis.

0250-7005/99 $2.00+.40

at any single point in time, only one of the six receptor
molecules can bind the single molecule of insulin. Which one
of the six receptor molecules will bind the insulin molecule is
just as random as which one of the six faces of a gambler’s die
will land upright. When such small numbers of molecules are
at work on cells, or in cells, the intrinsic randomness of
molecular discreteness expresses itself biologically.

Cells are often exposed to small numbers of molecules

We can see a dramatic example of molecular discreteness by
calculating how many growth factor molecules are at work ini
signaling a cell. Such a calculation is fairly straightforward, if
we have information on growth factor concentration, affinity,
number or receptors, etc. (Table I). The surprising result is
that, in many instances, there are. very few such ligand
molecules at work in signaling individual cells (Table I). In
fact, sometimes there are not even as many bound growth
factor molecules as there are cells. For example, for the
growth factor IGFII, at the ordinary physiological
concentration of 10'1v1m01/L, there is just one molecule of
IGFII bound for every six cells with receptors for this ligand
(Table I).

The discrete allocation of growth factor molecules among
cells gives cell division an either/or quality

The discrete allocation of growth molecules imparts onto cells
the either/or quality normally seen in individual molecular
events. If it takes but one molecule of IGFII to make a cell
divide, then the discrete allocation of IGFII among cells
(Table I) would give every cell roughly a 1-in-6 chance
(~.166) of dividing. If it takes two, or three, or four molecules
of IGFII to make a cell divide, then the discrete allocation of
IGFII among cells will give rise to this same random qualitg
of cell division, with cells having probabilities of ~ (1/6)
[~.0277], or ~'§1/6)3 [~.0046], or ~(1/6)* [~.00077].
Molecular discreteness imparts a random quality to cell
division (1).
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Table L.
Ligand Physiological Dissociation Number of Number of bound ligands per cell
concentration of the constant receptors (Ro[LJKp)

ligand in plasma (Kp) per cell

([L]) (moles/liter) (moles/liter) (Ro)
Epinephrine 750 1 ligand per 17 cells - 1 ligand per 5 cells
Norepinephrine 300-2800 x 10712 9x 106 750 1ligand per 4 cells - 2 ligands per cell
Erythropoietin 125-1.25 x 102 09 x 10° 300 1 ligand per 2 cells - 4 ligands per cell
Insulin-like growth factor- 1-18 x 10" 23 x 107 250 1 ligand per cell - 18 ligands per cell
Insulin-like growth factor-II 7-50 x 10712 1x10°® 250 1 ligand per 6 cells - 1 ligand per cell

References: Epinephrine, Norepinephrine (44.45), Erythropoietin (46), Insulin-like growth factor-I, Insulin-like growth factor-II (47,48)

Method for calculating the average number of bound growth factor molecules per cell
It is possible to determine approximately how many ligand molecules are bound among a population of cells, starting with the Law of Mass Action
(equilibrium form):

6 [LI[RV[LR]=Kp

in which [L]=the physiological concentration of ligand, [R]=the concentration of growth factor receptors, [LR]=the concentration of growth factor
molecules bound to receptors, and Kp=the dissociation constant of the receptor for its ligand. We may rearrange this to reveal the ratio of bound
receptors to free receptors:

(¢) - [LR)/[R]=[L}VKp

and by multiplying this ratio by the number of receptors per cell, Rp, we may determine the number of bound ligand molecules per cell, Lsoynp/NR,
where Ng=the number of cells with receptor for the ligand that make up the population and Leounp=the total number of ligands bound to all of the

cells of the population. Thus:

3) Leounn/NrR=Ro[L)Kp

The molecular discreteness gives populations of cells a way
to control their growth by creating and controlling the
growth fraction (G)

While molecular discreteness imparts an either/or quality on
the mitosis of individual cells, its effect on populations of cells
is to cause mitosis to occur in just a fraction of the population
(the growth fraction (G)). For example, for IGF-II at the
physiological concentration shown in Table I, if the binding of
a single molecule of IGFII is enough to make a cell divide,
then the discrete allocation of that ene molecule of IGFII
binding among every six cells will result in just one in every six
cells dividing (G ~1/6 ~0.1666). If it takes two molecules of
IGFII to make a cell divide, then this same discrete allocation
of IGFII molecules will result in a growth fraction of about
1/6x1/6 of the cells in the population (G ~ (1/6)* ~0.0277). In
this way, molecular discreteness gives populations of cells a
way to control their growth (2,3).

Cells can never escape the effects of molecular discreteness

How many molecules of growth factor must actually be bound
to a cell to change the cell’s behavior? A single photon is
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sufficient to set off a Gprotein cascade in a retinal
photoreceptor (4). For some ligands, such as IGFII, at least
two binding events, sometimes with receptor dimerization,
are required, because receptor cross phosphorylation is
necessary to set off a mitotic signaling cascade (5). Let us call
this discrete threshold number “h”. We shall call the number
of inhibitory growth factor molecules required to prevent a
cell from dividing “hy”, and the number of stimulatory growth
factor molecules required to induce a cell to divide “hg”.

The discrete allocation of growth factor molecules among
cells will be most dramatic when there are few ligand
molecules, such as in the case of IGF-II. However, cells can
never entirely escape the effects of this discrete process, no
matter what the level of ligand binding might be (3). For
example, should a population of cells have bound, either at
one time, or over a period of time, an average of 1000 ligand
molecules to its surface, then the discrete nature of these
ligands would ensure that some cells will bind 1001
molecules, some 999, some 997, etc. If hg=1000, then about
one half of the cells in the population will divide. The higher
the value of hs, the lower will be the growth fraction (G)
while the lower the value of hg, the higher will be the growth
fraction (G).



Michaelson: The_Role of Molecular Discreteness in Normal and Cancerous Grovyth

Of course the concentration of growth factor may be so
high, or value of h may be so low, as to make the growth
fraction (G) close to 1, and thus no longer a useful way to set
the rate of growth. Might cellular signaling occur in such a
range? The data in Table I suggest otherwise, but, of course,
here is an area that is ripe for experimental analysis. Indeed,
this provides one way to test the models proposed here.

GROWTH

As we have seen, molecular discreteness, working at the
microscopic scale, can cause mitosis to occur in some cells but
not others. In this way, molecular discreteness can create the
growth fraction (G), and thus control growth. As we shall see
next, with this ability to create and control the growth
fraction, molecular discreteness can give rise to the
macroscopic features of growth: growth to predictable sizes,
at predictable times, and to predictable shapes. We can see
this by considering several simple examples.

Cellular populations can use molecular discreteness to grow
to predictable sizes by S-shaped growth curves

Let us consider a population of cells in a constant volume,
such as a bird embryo in an egg, or an organ in an animal of a
fairly constant size. We can call the number of cells in this
population N, and the final size of the population Npmax. In
this example, let us assume that proliferation will be
controlled by an inhibitory growth factor, that is, a factor
which, when it binds to a cell, will prevent cell division. In
fact, inhibitory growth factors of this type, such as TGF-g are
quite common. Let us also assume, in this example, that all of
the cells of the population produce the factor, and that all are
sensitive to the inhibitory action of the factor. Let us call the
dissociation constant of the inhibitory growth factor for its
receptor “Kp”, the number of receptors per cell “Rg”, the
number of inhibitory growth factor molecules produced by
each cell “a”, the minimum number of inhibitory growth
factor molecules required to prevent cell division “hy”, and
the volume of the organism “V”.

In this example, when there are very few cells, there will be
very few inhibitory growth factor molecules. The discrete
allocation of these few growth factor molecules will mean that
most of the cells will rot have bound by hy molecules of the
inhibitory growth factor, thus allowing most to divide (G ~1,
when N is small). As the population grows in size, because the
volume (V) in which it is growing is constant, there will be a
gradual increase in the concentration of the inhibitory growth
factor, and thus there will be an increase in the number of
cells that have bound hy inhibitory growth factor molecules,
and an increase in the fraction of cells that will be prevented
from dividing (G<1 when N<Nmpmax). Eventually, the
population will grow to a size where every cell will have
bound hy molecules of the inhibitory growth factor, at which
point growth will finally stop. At this point, the Npax of the

population will have been reached (G=0 when N=Npax)
(Figure 1B). Such a gradual decline in growth rate to a
predictable final size (Nmax), looks like an “S” when
displayed on a graph of cell number-versus-time, as we can
see by making a simple computer simulation of our example
(Figure 1B). Such S-shaped growth is often found for the
developing populations of cells that form the tissues, organs,
and anatomical structures of the body (Figure 1A) (6,7), and
thus Figure 1B illustrates how molecular discreteness can give
rise to this familiar aspect of growth. It is fairly
straightforward to calculate the equation of S-shaped growth
and the value of Npmax, which results from such a discrete
distribution of growth factor molecules. (For derivation the
reader is referred to my webpapge; http://webm9120.
ntx.net/BreastCancerMath.html);

1) rate of growth = r N(1-[N/Nmax])

where Nmax= hi[VKp/Roa]

So, here we have arrived at the remarkable result that
molecular discreteness can give a population of cells a way to
grow by an S-shaped growth curve to a predictable size (Ny4x)-

Cellular populations can use molecular discreteness to grow
at predictable times

The appearance of multiple organs and tissues, each at their
familiar times, is a fundamental feature of embryonic
development. Such timing may also be seen to be a natural
consequence of the discrete allocation of growth factor
molecules among cells. If, for example, there are two
populations, Ny and Nj each produce self-acting inhibitory
growth factors, and, in addition, the cells of the Ny population
produce a stimulatory growth factor, without which the cells
of the Nz population will not divide, then the discrete
allocation of the stimulatory molecules will naturally lead to a
delay in the appearance of population N3, Again, the essential
mechanism at work here is the discrete allocation of growth
factor molecules among cells. Such timing of the growth of a
population may be shown mathematically, and the result is
illustrated in Figure 1C.

Cellular populations can use molecular discreteness to grow
to predictable shapes

Perhaps the most dramatic expression of embryogenesis is the
creation of anatomical form. We have found that such growth
to predictable shape can also be the consequence of the
discrete allocation of growth factor molecules among cells.
We were able to detect this potential of molecular discre-
teness by constructing a computer simulation model -that
followed the distribution of cells and growth factor molecules
spatially. The programs for these simulations were developed
by a student in my lab, ChaoWei Hwang, and run on a Silicon
Graphics workstation. These simulations simply treated each
cell and growth factor molecule as a discrete entity. In each
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Figure 1A. The empirical S-shaped curve of cellular proliferation Shown is data on the number of cells in the chick neural retina (4), but the growth of many
tissues, organs anatomical structures, and whole organisms fit curves of this general form(4-8,25,26). \S-shaped growth typically begins with exponential
growth (dN/dt=rN) but gradually makes the transition to zero growth (dN/dt=0), when the cellular population has reached its maximum number cells
Npax. In this example, Nygax ~ 2% 10% cells.

1B. S-shaped growth caused by an inhibitory growth factor by computer simulation Growth in this simulation is of a population of cells in a constant
volume, where cell division is influenced by the action of an inhibitory growth factor. (hy=10, a=10° molecules, Ro=1 o receptors per cell, V=Icc, Kp=10"
Mliter ~ 10" molecules/liter). :

1C. Sequential growth caused by the discrete allocation of stimulatory growth factor molecules As shown in the text, the discrete allocation of stimulatory

growth factor molecules results in the growth of two populations, such that the size of the population N will grow according to the logistic dNy/dt = r (N -

(1/Npaxi)N, 12) with r=1 division per unit time, Nyaxi =a,-Ro}-/VKD,-, and V=lcc, KD=10'6 ‘Mliter a; = 10° molecules, Ro=107 receptors per cell), while
)

the growth of the population Ny, dNy/dt=r (N-(1/Nagaxz )N2°) N(1- (1-INYNE) here J= agRog/VKps and Kps=10 Militer ag = .5 x 10° molecules,
Ros=1 o receptors per cell).

1D. The change in the growth curve caused by multiple somatic mutations The general progress to higher and higher values of Ny ax resembles the actual
multi-step process of tumor formation. Times of somatic mutation indicated by arrows. :
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iteration, the location of each molecule was assumed to be
under the random influence of diffusion; there were no
external spatial cues whatsoever. As in the examples cited in
the previous paragraphs, whether or not a cell would divide
depended upon whether it had bound a sufficient number of
growth factor molecules. Surprisingly, we found that very
complex structures would emerge quite spontaneously from
this simple discrete allocation of growth factor molecules. For
example, in the bottom panel in Figure 2 is shown the results
of one such simulation, which examined the growth of a
population of cells (all colored red in this figure) producing a
self-acting inhibitory growth factor. Initially, the population
grew as a rough ball, but after a period of time, “arms” began
to appear, and the population took on the appearance of a
starfish. Above this image in Figure 2, are displayed the
results of another simulation, except involving two types of
cells, shown in red and green, and in which each cell type was
modeled as if it made an inhibitory growth factor that acted
only on cells of the other type. Again, growth initially began
as a rough ball comprised of a mix of cells of both cell types,
but gradually differential cellular proliferation gave rise to a
structure in which the two cell types came to comprise
opposite sides of a “dumbbell” shaped structure. Repetition
of both of these simulations reproducibly lead to shapes of
the same general type. Thus, the growth of populations of
cells to particular shapes, like the growth of populations to
particular sizes and at particular fimes, can be the direct
consequence of the use of molecular discreteness.

GENE EXPRESSION

Of course, growth factors are not the only proteins present in
cells in small numbers of molecules. The gigantic
macromolecules that we call genes and chromosomes are also
present in cells in very few numbers. Every human cell, being
diploid, has just two chromosome-6’s, fwo globin genes, two
nucleotide molecules at position #43 of a globin gene. These
individual genes/molecules are subject to the same either/or
quality that we have already seen to occur at the cell surface.
Either a particular regulatory molecule binds to a particular
DNA sequence, or it doesn’t. Either a particular nucleotide in
a gene is methylated or it isn’t. Might we not expect, then,
that this microscopic either/or chemistry of individual genes
would be translated into an either/or quality seen in the
expression of genes (8)? In fact, in a great variety of instances,
where gene expression has been examined one cell at a time,
exactly this either/or quality of gene activation has been seen
(8,9-24).

The first, and perhaps best known, instance of such random
gene activation was identified by Till, McCulloch, and
Siminovitch (9) in the creation of hematopoietic stem cells.
They found that the choice of such cells to differentiate, or
remain multipotential, is essentially a random process.
Furthermore, by employing the statistical methodology

developed by Till, the occurrence of random gene expression
was subsequently found in a number of additional instances,
including melanogenesis (as found by Bennett (10)), globin
gene expression (as shown by Levenson and Housman (11),
Gusella et al. (12) and Orkin, Harosi and Leder (13)),
myogenesis (as revealed by NadalGinard (14)), and terminal
differentiation (as has been described by Smith and Whitney
(15)).

My colleagues and I have found a very dramatic example of
this either/or quality in gene expression in the liver’s synthesis
of plasma proteins (8). If we homogenize a piece of liver, and
run a northern blot, each plasma’ protein mRNA will be seen
in amounts roughly reflecting their levels of synthesis.
However, this overall level of plasma protein synthesis reflects
a more subtle expression of cellular heterogeneity, as we have
found by examining plasma protein gene expression. by
immunofluorescence (8). By this method, we have found that
each plasma protein is present in, and presumably synthesized
by, a small, separate, subpopulation of the liver’s parenchymal
cells (Figure 2). Indeed, my colleagues and I have found
albumin to be in a bit less than 1% of the liver’s hepatocytes,
with each of the other plasma proteins present in separate
populations of hepatocytes, in numbers reflecting their
relative rates of synthesis (8). Furthermore we also found that
the reason why each protein is expressed in a small number of
cells is that plasma protein gene activation occurs with just
the same sort of either/or quality that we have earlier seen for
ligand binding at the cell surface. This could be seen in the
livers of mice heterozygous for a structural polymorphism of
albumin (4/b1°/4IbI°). We produced an antiserum that reacts
with just one of the allelic forms (antiAlblc) (8). With this
reagent, we found that in the livers of AlbI%/AIbI
heterozygous mice, some albumin-producing cells express the
AIbI® form of albumin, while other albumin-producing cells
express the AlbI° form of albumin, but there are few; if any,
cells that express both forms (Figure 2ef) (8). Such a
situation could only occur if the albumin genes were turning
on randomly.

The expression of just one of the two allelic forms of a
gene, such as occurs in the liver, is striking, but, in fact there
have been a whole series of precedents for this manifestation
of the either/or quality in gene expression. A very similar case
has been identified in the expression of olfactory receptor
genes in the olfactory epithelium, which, like plasma protein
genes, are each expressed in a small number of cells of this
organ (16). By examining the reverse-transcribed, PCR
expanded, material from single cells, Chess and colleagues
have found that neural cells express mRNA from only one of
the two allelic forms of an olfactory receptor gene (16).
Similar examples of expression of just one of the two allelic
forms of a gene, also occur for autosomal coat color genes.
Such independent expression of allelic forms of coat color
genes is apparent as a patchy, or variegated, appearance in
the pelt of heterozygous animals, and has been seen for a half
a dozen autosomes in the mouse, as well as for a variety of
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Figure 2a-g. Immunofluorescence of mouse liver. a)Albumin-containing hepatocyte (green) identified by rabbit anti mouse albumin in mouse liver.

b)Two complement component C3containing hepatocytes (red) in same field as figure la, identified by goat antimouse complement component C3
antiserum. c)Double exposure of same fields as Figures 1a and 1b, showing simultaneously albumin(green) and complement component C3(red) containing
cells. d)Cluster of albumin-containing hepatocytes. e)Two albumin-containing cells in a liver from a (AIbI°/.AIb1°)r; mouse, stained red by a rhodamine-
tagged heteroantibody to albumin. f)Reactivity of AntiAlbI® [(B6xA)F; antiB6.AIbIC serum] on the same two cells as in Figure 2e, only one of which is
reactive. Of 735 such albumin-containing cells examined in 5 heterozygous mice, just 49% were Albc +.

Bottom of Panel: Morphogenesis in a computer? Shown are images of two simulations of cell growth under the influence of inhibitory growth factor
molecules diffusing in space. TOP: several selected iterations of the growth from two cells (one red, the other green) in which each type of cells make
inhibitory growth factor molecules that act on the other type. BOTTOM: The growth from a single red cell (red), in which cell growth is inhibited by the
action of a self produced, self acting inhibitory growth factor.
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autosomal genes in guinea pigs, cattle, rabbits, dogs and pigs
(8). Globin genes have also been found to express this
independent expression of allelic genes, as has been observed
in the erythroid precursors from children heterozygous for a
fetal globin gene (17). An absence of coordination of allelic
genes has been identified with respect to the state of DNA
methylation, as has been shown by Silva and White (18).
Finally, the independent expression of allelic genes has been
found for expression of the interleukin-2 locus by Hollander
etal (19)

Of course, the either/or quality of gene expression that can
be seen when cells are examined one cell at a time may be
hard to see when we examine the large cellular populations
that make up the tissues, organs, and anatomical structures of
the body. Many millions of cells are required for most
biological and molecular-biological assays, such as SDS gels,
northern, or western blots, and thus it may be hard to see the
fine scale cellular heterogeneity present among individual
cells.

Another reason why the signs of the either/or quality of
gene expression may escape our notice is that differential
cellular proliferation, occurring after ‘the creation of
cellular heterogeneity, may obliterate the signs of the
earlier events of stochastic gene expression. The classic
example of this may be seen in the immune system, where a
great variety of lymphocytes is generated by random
assembly and activation of immunoglobulin and T-cell
receptor genes. Unless we examine lymphocytes one cell at
time, we may not see this stochastic quality, because it is
erased by the clonal sclection that organizes the immune
response. My colleagues and I have seen an analogous, if
perhaps simpler, example of multicellular organization by
cellular selection among the plasma protein producing cells
of the liver (Figure 2). Thus, we have found that during
inflammation, the liver is able to produce more fibrinogen
because differential cellular proliferation of fibrinogen-
producing hepatocytes causes the liver to contains an
increased number of these cells (8). Likewise, we have also
found that young mice and rats are able to produce high
levels of o-fetoprotein early in life because the a-
fetoprotein producing cells divide more rapidly, and thus
become more plentiful, than the other plasma protein
producing cells in the liver (8). This raises the question of
whether cellular organization by cellular selection is really
an exclusive specialty of the immune response. During
embryonic development especially, differential cellular
proliferation is a widespread occurrence that creates the
tissues, organs and anatomical structures of the body (8,20-
24). Perhaps early metazoans have turned to this simple, if
inelegant, process to create many aspects of multicellular
organization. If this is so, then perhaps one key to
multicellular organization lies in the ability to link the
randomizing action of molecular discreteness on the
genome to the organizing action of molecular discreteness
on cellular proliferation.

CARCINOGENESIS
What is cancer

As we noted above, many of the normal cellular populations
of the body grow to their final sizes by S-shaped growth
curves. Surprisingly, when tumors have been subject to the
same sort of analysis, they have also usually been found to
display S-shaped growth curves, but with Npmax’s that are so
large as to be lethal (8,25,26). For example, the BICR/A8
murine adenocarcinoma grows by an S-shaped curve to a
projected Nyaxof 700 grams (25); it’s not the shape of this
tumor’s growth curve, but the size of it’s Npax that is lethal
to a 50 gram mouse! Human breast cancers have also been
found to grow by S-shaped %rowth curves growing towards
projected Nmax's of ~3 x10 2 cells, but they cause death at
about 10' cells (26). It’s almost as if tumors make a half-
hearted effort at growth control that is normal in quality, but
lethal in quantity.

By considering molecular discreteness at work in mitotic
signaling, we can examine, in a quantitative fashion, how
somatic mutations lead to cancerous growth

The math that we have developed above allow us to gain
insight into what causes the S-shaped growth curves of
cancers, with their disastrously large Nmax'’s. Let us return to
Equation#1, where we saw how the simple discrete allocation
of inhibitory growth factor molecules among cells can result
in S-shaped growth to an Nyax whose value is:

(12)

Recall that V is the volume of the organism, Ky is the
dissociation constant of the ligand for its receptor, a is the
number of ligand molecules that are produced by each cell, Iy
is the minimum number of bound ligand molecules necessary
to prevent a cell from dividing, and Rg is the number of
receptors per cell for the ligand.

Nmax = (VKp/a) by (1/Ro)

Equations #1 and #la give us a way to see, in a
quantitative fashion, how somatic mutations can lead: to
changes in the NMax’s of cellular populations. Let us consider
the case where there are two autosomal pairs of inhibitory
growth factor receptor genes, for a total of four homologous
receptor genes. In terms of Equation #1a, we would say that
Ro=4q, where q is the number of cell surface molecules
produced per gene. (We shall assume for the simplicity of this
example that all four genes are identical in type.) Equation
#1a allows us to see the effect on Nyax if any of these genes
became mutated:
(1b) Nmax = (VKp/a)hy / [4q]

In fact, mutations for the genes for the receptor of the
inhibitory growth factor TGF-f have been found to be
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associated with cancer development (27), so our example is
not unrealistic. Let us consider what would happen if
there were a mutation resulting in the deletion of just one
of the four hypothetical inhibitory growth factor receptor
genes:

(lo)

Note that such a change will result in the rather minor 33%
increase in the cellular population’s Nyax. If there were a
second deletion:

Nmax” = (VKp/a)hy/ [3q] = 4/3 Nmax

(1d) Nmax™” = (VKp/a)hi/ [2q] = 4/2 Nmax
this will result in an increase in the value of Nmax by a more
impressive 100% increase in size. Yet another mutation will

result in:

(le)

That is, a population growing to an Nmax that is four times
bigger than the initial size.

Nmax” = (VKp/a)hy/[1q] = 4/1 Nmax

Note how Equations #1b-le show how each sequential
mutation raises the value of Nyax by a notch (Figure 1D).
This is remarkably reminiscent of the stepwise progression from
preneoplastic disease to outright cancer, where a clonal cellular
population evolves from its normal Nyqy, to Nyax's that lead
to hyperplasia, and finally to Npp4x's that are so large as to be
incompatible with life (43). ’

With a discrete model of the chains of mitotic signaling
that go on within cells, it is possible to estimate, in a
quantitative fashion, the effects of oncogene mutations on
growth

Of course, Equation #1 describes the Nymax for a very
simple example of growth. However, the very same discrete
approach can be used to model systems of mitotic signaling
that are far more complex and realistic (28). The general
method used to assemble such more real-life cases is
analogous to the method used to construct Equation #1,
although more tedious, and readers who are curious to see
how these equations are strung together are referred to my
webpage (http://webm 9120.ntx.net/BreastCancer Math.
html) for details. Here, I will illustrate just one example,
the case of the Ras pathway. Following what we know of
the biology of this pathway, (29,30), we shall consider the
case where ligand binding event leads to receptor
dimerization and phosphorylation, then She phospho-
rylation, then Grb2 binding, then Seos binding, then Ras
binding, then Ras-GTP association, then Raf binding, then
MEK phosphorylation, then MAP kinase phosphorylation
of transcriptional proteins (perhaps fos, c-jun, c-myc, or
myb), which induce the expression of cyclin D:
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2 Nuax = (VKp/Roa) (1/Cn) (V?/ k By) Rigas

where Rigas = y k™ (b1 Vo) (r/Ve)
y = the number of cyclin D genes
and where py=[M-P]Vc={(82/Vc) (Vmax2) (Sm/Vc) (L49t12m.p) Kz + (Sm/Ve)
where fp=[MAP-PIVc={(By/Vc) (Vmaxs)(Smar/Vo) (1.49t1 2map.p) /Kms + (SMAP/V )
where f3=[MEK-P]Vc={(B4/Vc) (Vmaxa) (Smex/VC) (14902 MEK.P) K4+ (SMEK/VC)
where B4=[Ras-GTP-Raf}Vc=k" (Bs/V¢) (1.491/2Ra5-GTP-RaD)
where Bs=[Ras-GTP]Vc={B¢/V) (Vmaxs) (Sras-GDP/VC) (1491 3Ras TP-P) }KMs + (Sras. cDPV )
where fg=[Grb-P-SOS]Vc=k"""" (B/V¢) (1.49¢126rb-P-505)
where B7=[Grb-P1Ve={(Bs/V0) (Vmaxe) (Sern/ V) (L49u/2600-p) Kns + (SGrb/Ve)
where Pg= [She-P1Ve={(By/Vc) (VMax7) (Sshe'Ve) (1-4941/28he.p) EM7+ (Sshe/Ve)
where flo= concentration of dimerized receptor molecules activated by ligand binding =
K" (q/2HEN ) 2(1.49t1 2receptor dimer)

Although this expression is far more complicated, and far
more realistic, than Equation #1, with it we can use exactly
the same approach to examine how somatic mutations can
lead, step by step, from normal Npax’s, to Npmax's that are
hyperplastic but benign, to Nmax’s that are lethal.
Furthermore, expressions like Equation #2 allow us to
predict the behavior of actual, rather than hypothetical,
biological situations. Thus, the mathematics of molecular
discreteness gives us a practical arithmetic with which we can
examine the molecular biology of cancer in quantitative terms.

SCREENING FOR CANCER

Once groups of cells have become cancerous, that is have
converted to having Nmax’s that are lethal, they can still be
eradicated if detected early enough for the tumor to be
removed entirely. Perhaps the greatest success in this
approach has been achieved for breast cancer, where early
detection has been shown to result in remarkable reductions
in breast cancer death. Indeed, controlled randomized trials
have shown that mammogramic examination, carried out
every one to three years, will improve the chances of surviving
breast cancer by 30% (31-37). This is a considerable
achievement, but it also raises the question of whether there
might have been a way to save the lives of the 70% of women
whose tumors were not discovered before their cancers
spread: As we shall see next, the mathematics of cellular
discreteness provides just the method that we need to address
such questions (34).

Data are available for breast cancer which makes it possible
to estimate that probability, 1/P, that a cell will leave the
primary tumor and form a distant metastasis

We can tackle the problem of breast cancer screening by
asking whether the spread of a cancer cell from a primary
tumor to a distant site might have just the same sort of
eitherfor event as ligand binding or cell division. Let us call
1/P the chance, per day, that a breast cancer cell will leave the
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primary tumor and form a distant lethal metastasis. Thus, P
may be thought of as the number of “cells” for the number of
“days” it takes until there will be, on average, 1 metastasis per
tumor. Thus P carries the units which we shall call “celldays”.
Let us also call C the number of “celldays” that a tumor of N
cells has accumulated. The number of cells (N) in a tumor
diameter (d) can be roughly estimated by the expression
N~ [4/3n(d/2) ]10 cells/cc. To calculate number of

“celldays”, C, that a tumor of N cells has accumulated
requires a consideration of the rate of tumor growth, which
can be estimated from the results of a number of studies
(33,39). For example, Peer et al. (39) have found that tumors
in patients less than 50 years of age have a median doubling
time of 80 days, while the tumors of patients 50-70 years of
age had a median doubling time of 157 days, and tumors in
patients more than 70 years of age had a median doubling
time of 188 days. Such growth information can be
incorporated into a simple computer simulation, and the
relationship between tumor size, N, and the number of “cell-
days”, C, can be estimated. (Again, interested readers may,
find further detail on my webpage, http://webm9120.ntx.net/
BreastCancerMath.html)

Now consider a group of patients whose tumors have
grown to a size such that they have accumulated exactly P
“cell-days” (C=P). It would be expected in such a group of
patients that, on average, there would be 1 metastasis per
patient, since C x 1/P = P x 1/P = 1. Of course, this is just an
average. While some of these patients would have 1
metastasis, others would have 2 metastases, or 4 metastases,
and some patients would have 0 metastases, and will be free
of metastatic disease. Using the Poisson distribution, it is
possible to calculate that when the average number of
metastases per patient=I, the fraction of patients with 0
metastases, that is, fraction of metastatic-disease free
patients=1/e, or about 37%, of patients. On the other hand,
for a different group of patients, whose tumors were
sufficiently larger to have accumulated, for example, C=3P
“cell-days”, that is, for which the average number of
metastases per patient=3, then it follows that the fraction of
metastatic-disease free patients=1/e3. Thus, in general, if
C=the number of “cell-days” a tumor has accumulated and
P=the number of “cell-days” required to cause 1 metastasis per
patient:

(3) the fraction of metastatic-disease free patients = 1/e“F
or
(4) In (the fraction of metastatic-disease free patients) = -C/P

It follows from Equation #4 that if 1/P is constant, then a
graph of the LOG of the fraction of metastatic-disease free
patients versus the number of “cell-days” that a tumor has
accumulated (C) will form a straight, downwardly pointing
line, which forms an intersection with the origin. Two groups,
Tabar et al and Tubiana et al (31,32,37,38), have collected
data on the relationship between the size of the primary

breast cancer at the time of surgical removal (from which the
tumor’s value of C can be calculated) and the subsequent
incidence of distant metastatic disease. This information can
be seen in Figure 3A. These data conforms fairly well to the
log-linear predication of Equation#4, and thus provides
empirical support for the idea that 1/P is, in fact, fairly
constant (Figure 3A).

Of course, from a biological standpoint, this relative
constancy of 1/P is what would be expected for mechanisms of
metastasis formation that are dependent upon processes such
as mutation or simple mechanical events such as detachment
from the primary tumor, diss€mination, survival, and re-
engraftment. However, what is uniquely powerful about the
information provided by Tabar et al and Tubiana et al
(31,32,37,38) is that it has provided us with a way to measure
the value of this probability, 1/P, which Equation #4 indicates
will correspond to the point on the X-axis where the fraction
of metastatic-disease free patients=1/e, or about 37%. By such
an approach, it appears that the value of 1/P~ 10t
metastases/”cellday”.

We can use our estimate of the probability, 1/P, that a cell
will leave the primary tumor and form a distant metastasis,
to calculate the time-course of breast cancer metastasis

With this estimate of 1/P, it is possible to make an initial
rough estimate of the appearance of metastases over time
(FIGURE 3). After all, the average number of metastases
formed each day is simply the probability that a single cell will
form a metastasis (1/P) times the number of cells in the tumor
(N). Using such an approach, it is fairly straightforward to
estimate the probability of metastatic disease from the time of
the first breast cancer cell, as well as from the time when the
breast cancer can first be detected. The remarkable result of
these simulations, and the likely explanation as to why
screening can reduce the death rate, is that metastasis occurs
quite late in the time course of breast cancer growth, and
generally after the minimal sizes usually detectable by
mammography (about 1 to 10mm) (34) have been reached.

By a discrete compauter simulation of breast cancer growth it
is possible to determine the effect of various screening
intervals on the reduction in breast cancer death

It is necessary to add several additional features to the
simulation illustrated in Figure 3 before it is possible to make
practical estimates of the influence of breast cancer screening
on the reduction in metastatic disease among women in the
population as a whole. First, breast cancers that appear
between screens are detected if they become palpable. Since
the median size of the breast cancers seen in Tublana s
studies (37,38) in the pre-mammographic era was about 10"

cells, the simulation assumed that tumors which had escaped
detection by screening would be identified and removed when
they reached this size. Secondly, because tumors arise with a
variety of growth rates and probabilities of metastasis (1/P),
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the simulation must incorporate a consideration of this
feature of breast cancer biology. Tumor doubling times and
distributions were taken from Peer ef al (39) and Spratt ef al
(33), while the justification for the distribution of values for
1/P(~10"% may be found on my webpage (http://webm
9120.ntx.net/BreastCancerMath.html). The incidence of
metastasis for each of the various types of tumors was
calculated, and the weighted contributions of each of the
groups were summed- to derive an estimate of the incidence
of metastasis among women as a whole. Thirdly, in a
screening program, tumors detected by screening come to
the attention of the physician at the time of the
examination, and not at the time when they reach minimum
detectable size. Thus, the simulation was adapted to
examine the case where a breast cancer might reach
minimum = detectable size on any day between
mammographic examinations.

The discrete modeling of breast cancer reveals that most
breast cancer death should be avoidable if screening is
carried out often enough

The results of these more realistic simulations are shown in
Figure 3C and Table II. For a screening method that could
detect tumors larger than 3mm in diameter ( ~ 107cells), used
at intervals such as those now commonly in practice (1 to 3
years), the simulations yields reductions in the incidence of
metastatic discase (14%-51%) generally in agreement with
the actual experience of randomized mammographic
screening (31-37).

The results of the simulation shown in Figure 3 and Table
II are of most interest where they show the consequences of
the use of screening at intervals not presently employed. In
fact, these simulations suggest that women screened every 9
months would have a 66% reduction in metastatic disease in
comparison to unscreened women, while women screened
every 6 months would have a 78% reduction in the incidence
of metastatic disease, and women screened every 3 months
would have a 96% reduction in the incidence of metastatic
disease.

Thus the results of the simulations shown in Figure 3 and
Table II tell us that we should be able to eliminate most
breast cancer death, if mammographic screening was utilized
often enough! This is a very surprising and encouraging
result, which needs now to be tested, but it flows directly
out of the mathematics cellular discreteness. Furthermore,
although here we have examined breast cancer, the method
is sufficiently general that it should be applicable to the
screening of other tumors as well.

CANCER CHEMOTHERAPY
We can use the same mathematics of molecular discreteness

to caiculate the most efficient ways to use chemotherapeutic
drugs to treat cancer.
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Table II. Computer-generated estimates of the reduction in the incidence of
metastatic disease (in comparison to unscreened women) as a function of
the frequency of the screening examination.

Frequency Reduction in Reduction in Reduction in
of the incidence the incidence the incidence
examination of metastatic of metastatic of metastatic
disease by disease by disease by
a method a method a method
that can detect that can detect  that can detect
tumors larger tumors larger tumors larger
than 10% cells than 10" cells  than 10° cells
(~12 mm) (~3 mm) (~1.2mm)
every third year 7% 14% 16%
every second year 14% 22% 27%
every year 33% 51% 56%
every 6 months 62% 78% 84%
every 4 months 77% 90% 93%
every 3 months 86% 96% 98%
every 2 months 87% 97% 98%

By modeling the discrete interactions of drug molecules and
cells, we can understand the effect of anticancer agents on
cells over short time periods

Anticancer agent molecules and cells interact one-at-a-
time, much as growth factor molecules and cells interact one-
at-a-time. let us examine this interaction. If the
chemotherapeutic drug is an alkylating agent (40,41), it will
interact with DNA:

[alkylating agent] + [potentially lethal sites on DNA] =
[alkylating agent -DNA]

Chemical reactions of this type may be modeled using the
Law of Mass Action, which in its equilibrium form is:

(5) [alkylating agent] [potentially lethal sites on DNA]
k=

[alkylating agent -DNA]

Where k is a constant. Since most alkylating agents diffuse
into cells in a fairly rapid fashion, the intracellular and
extracellular concentrations of the alkylating agent can be
expected to be approximately the same. Let us define Q as the
number of potential lethal sites on DNA molecules per cell, and
A as the concentration of the alkylating agent. Since the DNA
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Figure 3. Top left. Relationship between tumor size (in “cell-days”) and the log of the incidence of metastatic disease.

Data taken from Tabar et al. and Tubiana et al. (31,32,37,38). For details of the method for calculating the number of celldays for tumors of each size, and
the possible variation of values of 1/P compatible with this data, readers are referred to my webpage (http://webm9120.nix.net/BreastCancerMath. hirni).

Top right. The probability of metastatic disease from the time when the primary tumor is first detectable ( 10 cells).

Shown a;g simulations for tumors with doubling times of 20, 40 and 80 days. Most breast cancers probably fall into one of these categories (see 33,39).
1/P~107°

Bottom. Computer simulation estimate of the effect of the interval between screens on the incidence of metastatic disease.

For details of the simulation, and its code, readers are referred to my webpage (http:/lwebm9120.ntx.net/BreastCancerMath.html).
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Figure 4. Top. Calculations of the change in tumor cell number under the influence of a continuous dose of a reversible chemotherapeutic agent
(methotrexate) at various dosages. Estimates are for a tumor of 10° cells. Dosages of methotrexate are: 13.8mglkg.(D=0.999), 4.6mg/kg, (D=0.99), 3mglkg
(D=0.95), 2.3mglkg (D=0.9), 1.6 mglkg (D=0.8), 1.2mglkg (D=0.7), .91mg/kg mgfkg (D=0.6), .7 mglkg (D=0.5), .56mglkg (D=0.4), .42 mg/kg (D=0.3),
.28 mglkg (D=0.2), .14 mgfkg (D=0.1). Note that the tumor will continue to grow when exposed to dgsages for which D<.5 (.7 mg/kg), and thus treatment
in this range must be considered palliative. For details of the simulation, and comparable simulations for alkylating agents, and its code, readers are referred
to my webpage (http://webm9120.ntx.net/BreastCancerMath. html). '

Bottom. Comparison of the effect of continuous versus intermittent dosages of a reversible chemotherdpeutic agent. Shown is the action of a drug such as
methotrexate, on a tumor of 1 0P cells. Cure of the tumor when the drug (1.2 mgikg or D=.7) administered every day leads to tumor eradication in 42 days of
treatment, while administration of the same dose, but given every other day, is not curative, no matier how long the drug is administered. For details of the
simulation, and comparable simulations for alkylating agents, and its code, readers are referred to my webpage (hitp: (fwebm9120.ntx.net/ Breast
CancerMath.html).

is located within cells, the concentration of [potentially lethal
sites on DNA]=Q/V¢, and [ALKDNA] =the average number
of lethal hits per cell/V¢, where Vo= the volume of the cell. By
substituting these values into Equation #5, and rearranging,
we may show average number of lethal hits per cell:

(6)  average number of lethal hits per cell=QA/k

Let us call D the fraction of cells killed by a chemotherapeutic
drug, and thus 1-D is the fraction of cells which survive. Using
the Poisson distribution, we know that when aver?ge number
of lethal hits per =QA/k, we can expect 1-D=1/¢* k=g

or:

7 In (1-D) = -n Awheren = Q/k
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In fact, it has long been recognized that, when examined
over short time periods, the relationship between cell number
and drug dose often conforms to just such a log-linear
expression (40,41). The mathematics of molecular
discreteness allows us to see the biochemical explanation for
this log-linear relationship.

A discrete, one-day-at-a-time, estimate of the effects of
drugs on cells allows us to model the competing forces of
tumor growth and tumeor kill which determine the effects of
cancer chemotherapy over long time periods

Equation #7 is sufficient if we want to know the effect of a
drug over short periods of time, but when we use these drugs
over the days, weeks, and months required to treat cancer, we
must also take into account the countervailing influence of
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the tumor’s regrowth. We can calculate the effect of
chemotherapy in such a long-term setting if we break the
problem down into single day increments. That is, if a tumor,
today, is comprised of Niogay cells, then tomorrow the tumor
will be comprised of Nomerrow cells, which is simply:
(8) Ntomorrow =
(the number of today’s cells)
- (the number of cells that would die anyway)
- (the number of cells killed by the drug)
+ (the number of cells created by the mitosis of the cells
not killed by the drug)
or:
(9) Ntomorrow = Ntoday - [L Ntoday] -[DG (Ntoday - LNtoday)]
+ [(1-D) G (Ntoday - LNtoday)]

Where L is defined as the natural cell loss fraction, and G
is the growth fraction, as was discussed at the outset of this
paper. Of course, if Equationt#9 allows us to calculate the
number of cells present tomorrow, we should be able to
repeat the process to calculate the number of cells the day
after fomorrow, and so on, until the tumor is eradicated. Thus,
by following the shrinking of the tumor, one-day-at-a-time, we
are able to calculate the number of days that it takes to
achieve the cure of a tumor, tcygg.

Let us look at an example of this discrete, one-day-at-a-
time, method for drugs, such as methotrexate and SFU, that
only kill cells that are dividing at the time they are exposed to
the drug. (The alkylating agents interact irreversibly with
cells, and to calculate their effect on tumors requires a
somewhat more complicated method). Let us also consider
what would happen to a tumor for which there is little cells
loss (i.e. L ~0). There are a number of methods for estimating
the value of G, but for this example, we can use the Gompertz
equation, [G=1(InN/InNmax)], where Nmax= 1012 , which
has been found to describe the behavior of breast cancer (26;
see also my webpage “http://webm9120.ntx.net/Breast Cancer
Math.html” for further details). Finally, as we have shown
above, D can be estimated with the expression In(1D)=An,
where A is the concentration of the chemotherapeutic agent
and n is a constant, for which empirical analysis for
methotrexate has been shown to be ~2.3mg/kg (42). Let us,
then, put these features into Equation #9.

(10) Ntomorrow = Ntoday [D (l(lnNtoday/lglo )) (Ntoday)] +
[A-D) (1(111Ntoday/lll10 )) (Ntoday)]

Should, for example, the tumor contain 1,000,000 cells (i.e.
Ntoday—lo ), and be treated with a dose of drug that would
kill 85% of all dividing cells (D=.85, A=1.9 mg/kg), then
using a calculator, we may easily determine that
Ntomorrow=650,000 cells. The process can then be repeated to
determine the number of cells the day-after tomorrow
(415,406 cells). In fact, it takes 22 such calculations before the
number of cells is reduced to below 1 cell, so the time
required to cure this tumor (tcyrg) is 22 days.

Of course, it is much easier to do these calculations by
computer simulation, and results of these simulations are
shown in Figure 4. Using such simulations, we have calculated
the tcyrgs’s for tumors with these properties of various sizes
(No’s), and at various doses of the chemotherapeutic drug
(Figure 4 Bottom). For example, these simulations show that
it is possible to achieve the cure of such a tumor of 10 cells
by treatment with methotrexate if given at a dose of 3.0 mg/kg
(D=.95) for 15 days, or 2.3 mg/kg (D=.90) for 18 days, or 1.9
mg/kg (D=.85) for 22 days. These predictions are highly
testable in experimental tumors in animals, and should also
be applicable to the actual treatment of cancer in people.

These computer simulations also allow us to examine the
effect of drug scheduling on tumor cure %Flgure 4). For
example, while treatment of a tumor of 10° cells with 1.6
mg/kg of drug (D=.8) given every day will result in the cure of
the tumor after 26 days of treatment (Figure 4) shows that
treatment of the same tumor with the same drug dose given
every other day will result in growth, rather than cure, of the
tumor. These results make dramatically clear that admi-
nistration of a chemotherapeutic drug every day is vastly more
efficient than an intermittent schedule of the same drug at the
same dose.

SUMMARY

Let us recap. The things of which we are made - electrons,
atoms, molecules - are discrete things. This molecular
discreteness imparts an inevitable either/or quality onto the
reactions of individual molecules, and then onto the behavior
of individual cells. We have seen a dramatic example of this
for the growth factor IGFII, for which there is normally just
about one molecule of IGFII bound for every six cells, and
many other mitotic signaling proteins also act in this realm of
small numbers of molecules (TABLE I). The consequences of
these microscopic discrete events for organisms as a whole
can be far reaching. The discrete allocation of growth factor
molecules among cells can provide multicellular organisms
with a way to limit cell division to a fraction of cells, and thus
to control growth. Indeed, as we have seen, populations of
cells may use this consequence of molecular discreteness to
achieve all of the essential features of organized growth:
growth to predictable sizes, and at predictable times, and to
predictable shapes.

Of course, it is not only mitotic signaling molecules that
are subject to the effects of molecular discreteness. The
huge molecules that we call genes are also present in small
numbers per cell, and are subject to the same either/or
quality of molecular discreteness. Whether or not a
specific site on a specific gene will bind a specific
regulatory factor, or be methylated, or bind a polymerase,
will be an either/or event. Apparently, these molecular
either/or events affecting the chemistry of the gene are
translated into cellular either/or events of gene expression,
as has been seen in a great variety of cases when gene
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expression has been examined one cell at a time (8,20-24).

The stochastic feature of gene expression that has been
found when cells are examined one at a time (8,2024) may
seem to us messy and surprising, but it’s not without its uses
to the organism. One of the tasks of embryonic development
is to generate a great variety of cell types, and stochastic gene
activation can achieve this end (8,21,22). The immune system
has long been recognized to use just such a stochastic
mechanism to generate the variety of lymphocytes that it
requires. It then relies upon differential cellular proliferation
to the create the cellular order that lies behind an immune
response. Perhaps metazoans also use this inelegant
mechanism of stochastic gene activation to produce the many
varieties of cells that make up our tissues, organs and
anatomical structures of the body. If so, then differential
cellular proliferation, rather than control of gene expression,
may be the driving force behind much of the order of the
multicellular organization (8,2024).

We have been able to “eavesdrop” on the body’s use of
molecular discreteness by mathematical modeling and
computer simulation. As we have seen, such discrete
modeling has given us insight into the behavior of both of
normal and cancerous cellular populations. With this
approach, we have been able to create a computer simulation
can try out, in a few seconds, the effectiveness of various
regimens of cancer screening and treatment that would take
decades to assess by clinical trial. In short, by modeling
molecular discreteness, we have a very practical way to gain
insight into, and power over, the populations of cells of which
we are comprised.
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